MyLibrary in Croatia: A Workshop

MyLibrary is a digital library toolbox -- a set of object-oriented
Perl modules designed to do I/O against a data model rooted in the
Dublin Core meta-data elements and supplemented with a faceted
classification system. These modules, in combination with other
pieces of software, enable librarians and developers to create
digital library collections and services.

The goals of this workshop are to describe the functionality of
MyLibrary, demonstrate a number of ways it can be used, and
make participants more aware additional venues for creating and
maintaining digital libraries. At the end of the workshop
participants will be able to: describe what MyLibrary can and can
not do, design a faceted classification system, understand how to
use the MyLibrary API to create digital library collections and
implement digital library services, outline a process of harvesting
OAI content into a MyLibrary instance, as well as outline methods
to syndicate MyLibrary content.

tric Llease Movrgaw

University Libraries of Notre Dame

Feburary 22, 2006

Workshop outline

Qw >

™ o

MyLibrary is a toolbox, not an application
Digital libraries are a set of collections combined with services
A workflow for implementing a digital library
1. Answer questions regarding information architecture: users, context, and

content
2. Allocate resources: time, money, hardware & software and people
3. Implement
4. Conduct usability studies
5. Evaluate
6. Repeat

Facets & terms: Designing a controlled vocabulary
Doing data-entry

1. Sets of books

2. Sets of journals

3. Sets of Internet resources
Making content searchable

1. Index the content with swish-e

2. Make the index accessble via SRU

3. Create a simple SRU client

. Creating user interfaces

1. Browsable interfaces
2. Searchable interfaces
3. Personalized/customized interfaces
Automate data-entry
1. Import sets of MARC records
2. Import a set of images from an OAI repository
3. Import a set of journal titles from an OAI repository
Syndicating MyLibrary content
1. Write a pathfinder
2. Create a search bookmarklette
3. Make an OAI data repository
4. Create RSS feeds
Discuss the state of librarianship

MyLibrary implemenetation and maintenance

This essay outlines one way to
implement and maintain a MyLibrary
instance. The following process is
suggested:

1. Assemble a team of people to do
the work.

2. Give the team the necessary
resources to accomplish the job.

3. Answer questions regarding
information architecture.

4. Install and configure MyLibrary.

5. Fill MyLibrary with content -- do
input.

6. Create interfaces to provide access
to the content -- facilitate output.

7. Do usability testing against the
interfaces.

8. Maintain the content.

9. Evaluate and go to Step #1.

Each of these steps is described in more
detail in the following sections.

Assemble a team of people to
do the work

You will need to assemble a team of
people to do the work, unless of course
Leonardo Di Vinci works in your
library. Few people posses all of the
necessary skills. At the very least your
team will probably consist of a:

* systems administrator
* Perl programmer
* graphic designer
* subject specialist

The systems administrator is responsible
for maintaining your computer's
hardware, software, and networking

infrastructure. They need to be
knowledgeable about operating systems,
filesystems, users/groups, and Internet
connections. They are the people who
install and configure things like Apache,
Perl, and MySQL. Some places have
computer centers who routinely do these
sorts of activities. Working with the
programmer, the systems administrator
will install the MyLibrary Perl modules.
Once MyLibrary is installed the systems
administrator will be primarily
responsible for making sure the
computer is running smoothly. Make
sure they back up your data on a regular
basis.

The Perl programmer is responsible for
creating functional interfaces to the
underlying MyLibrary database. Some
of these interfaces are computer-to-
computer interfaces such as the
importing of MARC records from a
catalog or the exporting of Real Simple
Syndication (RSS) feeds. Other
interfaces will have human components,
and in such cases the programmer will
need to work closely with the graphic
designer. The programmer is not
expected to create everything from
scratch since the MyLibrary distribution
comes with a number of sample
interfaces. You might want to simply use
one of these interfaces instead of
creating your own. It is essential for the
programmer to be familiar with object-
oriented programming techniques and
common gateway interface (CGI)
scripting.

The graphic designer is responsible for
making sure your human-to-computer

interfaces are usable and aesthetically
pleasing. (Usability is different from
functionality.) They need to have an in-
depth knowledge of HTML, XML,
cascading stylesheets, and the principles
of user-centered design. Ideally the user
interfaces written by the Perl
programmer will output rudimentary
HTML with plenty of HTML class and
id attributes to be used as hooks for the
cascading stylesheets. Through the
stylesheets the graphic designer should
be able to modify the look & feel of the
interface. This is called separating
presentation from content. The graphic
designer should also be an advocate for
usability testing, and they should have a
thick skin enabling them to take
criticism well.

Finally, the team will require someone
who is knowledgeable about content, a
subject specialist. This person will bring
to the team the principles collection
development, cataloging &
classification, as well as reference
services -- all of the traditional activities
of librarianship. This person will be the
primary driver behind the process of
answering questions regarding
information architecture, outlined below.
Once the questions are answered, the
subject specialist will be responsible for
putting the answers into practice through
data-entry. The subject specialist will
need to articulate sets of facets and
terms, select information resources, and
enter everything into the system
accordingly. The subject specialist
should also be keenly aware of user-
centered design principles because the
nature of librarianship has dramatically
changed with the advent of the Internet.
Expectations regarding the access and
use of information now are quite

different from the expectations of ten
years ago.

None of the people and skills outlined
above are more important than the other.
Each are equally necessary for a
successful implementation. At the same
time you might consider supplementing
your team with people with more
specialized skills such as:

* relational database design and
implementation

* indexing techniques

* advanced XML applications and
XSLT programming

* conducting surveys and doing
statistical analysis

* facilitating focus group interviews
and usability studies

* creating and maintaining controlled
vocabularies

* doing large volumes of data-entry
and maintenance

Each of the activities and skill sets are
described in greater detail throughout the
book. You are encouraged to consult
those chapters for more detail.

Give the team the necessary
resources to accomplish the
job

Computer hardware/software and time
are the necessary resources for the team
to complete their implementation.

The hardware/software requirements for
implementing MyLibrary are minimal.
Really. About any Intel-based computer
with at least 512 MB of RAM and 2 GB
of disk space will do just fine in terms of
hardware. The more RAM the better.
Now-a-days it is uncommon to have a
computer with less then 20 GB of disk

space. If you were to purchase a new
computer to host just MyLibrary, then
$2,000 will buy you a great piece of
hardware.

MyLibrary is essentially an open source,
LAMP (Linux, Apache, MySQL, Perl)
system. Therefore, if you or your
institution already have a Linux
computer up and running, then it will
probably work quite well. MyLibrary is
designed to do input/output against a
relational database. The MyLibrary
installation process is designed for use
the relational database program called
MySQL. Since MyLibrary is a set of
Perl modules, you will need Perl
installed on your computer. Any version
of Perl 5.0 or later will work. We use
version 5.8.5. The MyLibrary modules
require a number of other Perl modules.
The easiest way to install these modules
is through the use of CPAN. Invariably
you will want to serve your MyLibrary
content over the Web through an HTTP
server. We use Apache. Any HTTP
server will do as long as you are able to
run CGI scripts from within its
filesystem. Your systems administrator
and Perl programmer are expected to
understand these details.

In short, if you wanted to start from
scratch you could probably use one of
the desktop hand-me-downs lying
around the office. Install on it Linux,
Apache, MySQL, Perl, and you are
ready to go. If you already have a
computer in place, and it already has
Apache, MySQL, and Perl installed, then
that computer will work just fine too.

Time is by far the more expensive
resource necessary to fully implement
MyLibrary. Time will need to be
allocated in a number of ways. First of

all, time will need to be spent allowing
the team members to actually become a
team. Many people think this process is
too "touchy-feely". On the other hand,
the sooner the team establishes norms of
behavior, decides how to build
consensus, and learns how to work with
each other the more quickly your
implementation will come to fruition.
This is especially true if the team
members do not regularly work together.
Allow the members to go on a field-trip
or two as well as one more more retreats.
Feeding them helps too.

Second, time will need to be spent
answering the questions of information
architecture. On the surface this too
appears to be a lot of "navel gazing" but
time spent addressing these issues will
uncover hidden assumptions, help you
set priorities, outline the problems
MyLibrary will be expected to address,
and build relationships with your
patrons. While this work does not
produce a whole lot of tangible results,
the result forms the entire foundation of
your implementation.

Finally, time will need to be spent doing
the work normally associated with the
implementation of computer technology.
Setting up hardware and software.
Writing and/or configuring computer
programs. Customizing interfaces to
meet your specific needs. Filling the
system with data. Maintaining the data.
Evaluating success. Repeating the entire
process. Here again, remember that any
computer implementation consists of
20% computer work and 80% people
work.

Using the interfaces supplied with the
MyLibrary distribution, a competent Perl
computer programmer should be able to

install, configure, and make accessible a
couple dozen Internet resources through
a searchable/browsable interface in
about two days. Such an implementation
circumvents the prospects for a robust
hardware/software infrastructure, an
integrated user interface with the balance
of your site, let alone the principles of
information architecture.

If you wanted MyLibrary to be the
primary driver of your library's website,
then the entire implementation process
might take as long as a year. The time
you spend will not necessarily be
computer-related but related to the why's
and wherefore's of the system as well as
ongoing maintenance.

Answer questions regarding
information architecture

The first thing for the implementation
team to do is to answer questions
regarding information architecture.
There are essentially three questions to
be addressed:

1. Who is your audience and what are
their needs/desires?

2. What is the purpose of your
implementation and how does it fit
within the context of your
institution?

3. What type of content will your
implementation contain, and how
will it be conceptually organized?

These questions were elaborated upon in
a previous chapter.

As answers regarding information
architecture are articulated, write them
down and share them with the
stakeholders throughout your institution
-- both inside and outside the library.

Answering these questions is a never-
ending process. Regularly revisit the
answers regarding your information
architecture.

Install, configure, and fill
MyLibrary

Technically speaking, MyLibrary is a set
of object-oriented Perl modules
providing the means for doing input and
output against a specifically shaped
relational database. Therefore you will
need a computer with Perl installed with
hooks to a relational database.
MyLibrary is presently configured to use
MySQL as the database, but without too
much tweaking it should be able to do
input/output against other relational
databases such as Oracle or Postgres.
Similarly, MyLibrary was developed on
top of a Unix operating system, but
people have installed it on the Windows
platform.

Assuming you already have MySQL
installed, below is an outline of the
necessary steps used to install the Perl
modules. Much of this process is done
for you by running the perl Makefile.PL
command from within an uncompressed
MyLibrary distribution:

1. Create a MyLibrary database using
the sample-data.sql or
STRUCTURE-ONLY .sql files
found in the distribution's db
directory.

2. Create and configure a MySQL
user with permissions to read and
write to the newly created database.

3. Edit MyLibrary's Config.pm
module to record the network
location of the database as well as
the username/password of the
authorized user.

4. Install the Perl modules.

Once this is done you should be able to
write CGI or command-line driven
scripts allowing you to do various types
of input and output against the database.
Many sample scripts are located in the
distribution's bin, cgi-bin, and cgi-admin
directories.

Almost invariably you will want to use a
Web-based interface to do at least some
of your data-entry. The cgi-admin
directory contains a family of CGI
scripts allowing you to do this. Like all
the other scripts in the distribution, the
scripts are only samples. Save them in a
directory on your Web server where CGI
script execution is permitted and begin
data-entry. To do so try this:

1. Articulate a set of facet and terms
used to provide the conceptual
organization of your content. This
is described in more detail
elsewhere in this document.

2. Use the administrative interface to
enter the facets and terms.

3. Optionally, add descriptions of one
or more librarians and be sure to
associate them with one or more
facet/term combinations.

4. Create at least one location type.
Information resources take many
forms as do their location types. For
right now, create a location type
called something like "Internet
resource". These location types will
take the form of URL's.

5. Finally, use the administrative
interface to add to your collection.
At the very least you will want to
give each resource a title, a
description, and a location (URL).
You will also need to associate each

resource with at least one facet/term
combination.

Since MyLibrary is really a set of Perl
modules and not an application, data-
entry can be done from the command-
line as well as in batch mode. For
example, here at Notre Dame we
regularly dump sets of MARC records
(supplemented with facet/term
combinations) from our catalog, convert
these files into RDF/XML files, and
import them into our MyLibrary
database. Alternatively, since the fields
in the underlying MyLibrary database
are a superset of the basic Dublin Core
elements, it is possible to harvest content
from OAI-PMH repositories and cache it
to MyLibrary. This provides another
way to fill a MyLibrary instance.

Create interfaces, and do
usability testing

The MyLibrary distribution includes a
few sample interfaces to your MyLibrary
implementation. These interfaces will
not, nor are they expected to, satisfy the
needs of every institution. Instead, they
are examples of how the underlying
system can be exploited to meet you and
your patron's needs. Programmers are
expected to read the Perl API, examine
the code from the sample applications,
work with the balance of the MyLibrary
team, and write programs fitting your
particular needs.

Usability testing is a highly structured
communications process. It is not
science. The word "test" is a misnomer.
A better word might be "study". Other
sections of this book described usability
studies in much greater detail.

Finally, and just as importantly, make
sincere efforts to practice user-centered
design when creating your interfaces and
doing your usability testing. The Internet
has significantly changed user's
expectations regarding the access and
use of information. The older roles of
libraries learned in library schools are
increasingly outmoded. Us librarians
need to rethink much of what it means to
be a librarian in an era of globally
networked information. Put less
emphasis on personal experience and
antidotal evidence. Instead, use focus
groups, surveys, log file analysis, and
usability "studies" to form the basis of
your decision-making.

Maintain content

Once you have a production
implementation of MyLibrary in place
the largest ongoing activity will be
maintaining the content. How you do
this depends a great deal on the types of
content in your implementation, where it
originates, and where it is used.

For example, if your content primarily
comes from your catalog and gets
imported into MyLibrary via sets of
MARC records, then maintaining your
content will be a matter of maintaining
your catalog. You already have
processes in place for this type of work.

If your content comes from OAI data
repositories, then maintence will most
likely take the form of regularly run
programs against those repositories.

More than likely, your content will be a
mixture of things from your catalog and
sets of Internet resources usually not
deemed worthy of putting in your
catalog. (For example, items you do not

10

own nor have licensed.) In these cases
you will probably use a combination of
automated and manual data-entry
methods. The records in your system
that were entered manually will need to
be regularly examined. Do the links still
work? Are they still relevant according
to your overall information architecture?
Do they still fit within your collection
development policy? If not, then you
will need to update or weed them from
your collection.

The organization of MyLibrary content
is postulated on sets of locally-designed
facets and terms -- a controlled
vocabulary. By definition, a controlled
vocabulary is a form of human language.
Language is ambiguous and ever-
changing. It will be necessary to monitor
your facets and terms updataing them as
time goes on. Do you need to create new
subject facets? Have new audiences
become a part of your community and
will it then be necessary to create an
audience facet? Do you now have access
to new types of information like sounds
or data sets? If so, then you may need to
update your facets and terms. Does your
hosting institution (college, university,
company, or municipality) host a portal?
Do you want to advertize not only your
information resources but also your
services in the portal? If so, then you
may need to go beyond the traditional
facets such as subjects, formats, and
research tools, and enhance the them
with things like help and bibliographic
instruction.

Processes for maintaining your content
will differ greatly from library to library.
Consider reallocating existing personnel
for the task. In principle the maintenance
process is similar to the maintenance
process of other content in your library.

The difference is only the environment
in which it takes place.

Evaluate and repeat

Library work is never done. Students
come and students go. Younger people
get older and require/desire different
aspects of library service. Collections are
rarely complete. Technology is
constantly changing, and these changes
modify user expectations. Priorities are
modified over time. Budgets fluxuate.

For all these reasons it is a bad idea to
think of your MyLibrary implementation
as a static thing. It will need constant
monitoring. Is it getting used in the
manner you expected? It it meeting
expressed user needs and desires? Does
it cost more than the percieved benefits?
On a regular basis you will want to ask
yourself these sorts of questions, and
depending on the answers you will want
to return to Step #1.

11

17

First Principles of Information Architecture: “On your
Mark. Get set. Go!” not “Fire, and then Aim.”

At its core, information architecture is about
users, context, and content. By answering
questions regarding these issues your
MyLibrary implementation will not only be
functional. It will be understandable to your
intended audience, serve a meaningful
purpose, and contain relevant content.
Information architecture is the result of a
planning process. It is about "On your mark.
Get set. Go!" not "Fire, and then aim." This
essay elaborates on these ideas and outlines
some of things you need to think about as
you begin to implement any information
system, not just MyLibrary.

A definition

Information architecture is often illustrated
using a Venn diagram depicting three
interlocking circles representing users,
context, and content. Users are the intended
audience of an information system, context
is the reason the systems exists, and content
is the data/information the system has to
communicate. For good information
architecture to take place, a concrete
understanding of an information system's
audience, purpose, and data/information is
necessary. This is like the architecture of
buildings, where an understanding of who is
going to live there, what the building is for,
and what it will contain must be outlined
before construction can begin.

At the risk of pushing the metaphor too far,
the result of information architecture is a
"blueprint illustrating the framework" which
you will fill with content, organize with
controlled vocabularies, hang site-wide
navigation, and make browsable as well as
searchable. If you do this with an eye to
satisfying the expressed needs and desires of
your users as well as your hosting

13

institution, you will end up building
something usable (not just functional), and
they will come.

Users

The first step in designing your information
architecture is answering questions
regarding users. You need to define the
primary audience of your information
system, build relationships with them, and
learn what they need and desire.

Defining your information system's primary
audience is easier than you may think. In a
private university like Notre Dame, the
primary audience includes the University's
students, faculty, and staff. The needs of
these people take precedence over the needs
of the general public, alumni, or scholars
from other institutions. There are limited
resources (time and money) allotted to the
implementation of your information system,
and it is not possible to be all things to all
people. Consequently, you need to prioritize
and decide to whom, primarily, you are
going to cater your service. At a public
university, the audience may be broader,
including the general public, especially the
public of the immediate area or region. In a
public library, the primary audience may be
area residents. In special and school
libraries, the answers to these questions will
seem almost obvious.

After defining who your audience is, you
need to establish inter-personal relationships
with them. No, you don't have to become
their best buddy, but you do need to build
rapport to learn their expressed needs and
desires. You need to learn and, more
importantly, understand the challenges and
difficulties they are having when it comes to

doing their work. I'm sure you can create a
long list of their challenges and difficulties,
but since you are not them you can not
prioritize which of the challenges and
difficulties are the ones they need addressed.
By building relationships with your primary
audience you will learn these priorities and
be able to focus your resources on making
them easier to accomplish.

There are many ways to build relationships
and learn of your audience's priorities.
Surveys are the first thing that come to
mind. They are relatively inexpensive. They
can touch large numbers of people, and they
are good for answering "what" types of
questions. "What is your age?" "What do
you like and what do you dislike about our
present information system?" "If you could
change one thing, what would it be?" The
answers to survey questions often need to be
short and succinct; few people are going to
give you a lot of detail while answering
survey questions. The results of surveys
usually manifest themselves numerically and
then get converted into graphs. Along the
lines of surveys are log file analysis. By
looking at the statistics captured by your
staff as well as your present information
systems, you will get an idea of what your
audience uses. People will often say one
thing and act differently. Log files help put
this behavior into perspective.

The other side of surveys are focus group
interviews, structured communication
sessions used to learn about your audience's
feelings. When compared to surveys, focus
group interviews require a greater degree of
interpersonal skills on the part of a
facilitator. They touch fewer people than
surveys and therefore are often times seen as
more expensive. On the other hand, focus
group interviews answer questions surveys
don't answer, specifically "why" questions.
"Why do you like this service as opposed to
another?" "Why do you think it is important
to for us to implement such and such
feature?" "Why do you spend your time

14

working in this particular manner?" Just like
surveys, the focus group interview process
ranges from the simplistic to the complex. It
can be as simple as a one-on-one chat over
coffee, or it can be as elaborate as a meeting
of six to twelve homogeneous people who
answer questions in a moderated setting by a
professional facilitator.

In conclusion, in order to learn about your
audience's needs and desires, consider
issuing one or more surveys first and
following up with sets of focus group
interviews second. This process will enable
you to validate the survey's conclusions and
learn why people answered the survey the
way they did.

Context

The next step in articulating an information
architecture is to answer questions regarding
context. What is the purpose of your
information system, how does it fit within
the totality of your institution's products and
services, and what sorts of resources (time
and money) are allotted to the system's
development and maintenance?

Your information system will not exist in a
vacuum. It will be a reflection of its hosting
institution, and in order for the information
system to reflect well you will need to know
the goals and priorities of your institution.
For example, you need to know the purpose
of the hosting institution. What problems is
it trying to solve? How can your information
system be expected to contribute to the
solutions? Look to your institution's mission
statement for answers. Here at Notre Dame
the library's role is to help the students,
faculty and staff of the University
community do their learning, teaching, and
scholarship. The role of our website (and our
MyLibrary implementation) mirrors the
purpose of the University Libraries: to help
facilitate learning and teaching, to assist in
scholarship, to supplement access to
collections and service, and to facilitate
communication.

The context of your information system will
also be tempered by the amount of resources
allotted to its development and maintenance.
These resources take the form of time,
money, hardware, software, people, and
expertise. The implementation and ongoing
maintenance of your information system
will require a diverse set of skills. None of
which are necessarily more important than
the other. The people with the necessary
skills include subject experts, leaders of
people, graphic designers, people who can
mark up texts, knowledge workers who can
organize content, usability experts,
marketers, programmers, and systems
administrators. The amount of time and
energy these sorts of people can bring to the
implementation of your information system
is directly proportional to what your
information system will enable people to do
and do well. When the Web began a little
more than fifteen years ago people's
expectations were low, but with the growing
size and diversity of the Web, people's
expectations have matured, and
consequently so does the need to allocate
more resources to your implementation.

Defining the purpose of your information
system and articulating what resources will
be spent on its development is the second
step in the creation of your information
architecture. Do not set your goals too high
lest you set yourself up for failure.
Determine the importance of your
information system compared to the other
products and services you offer, and allocate
your resources accordingly.

Content

The third step in the creation of your
information architecture is defining what
content it will contain. This is akin to
articulating a collection development policy.

Not even Google provides access to the
totality of the world's content, and there is
no reason to expect you to fill this role.

15

Instead, focus on the answers regarding
users and content to define the scope of your
content. Ask yourself, "What are the
strengths of my institution?" "To what
degree does my collection need to be
comprehensive, authoritative, up-to-date,
written in a particular language, presented in
an aesthetically pleasing manner, etc.?" In
other words, create a list of guidelines that
your information resources need to embody
in order to be a part of your collection. Just
because a particular information resource is
about a particular subject does not
necessarily mean it is a good candidate.

When the University Libraries of Notre
Dame re-created its website using
MyLibrary, we decided the content would
not be very much different from the content
of traditional, physical libraries. It contains
tools to access bibliographic information,
access to digital library services and
collections, instructions for pedagogy, and
last but not least, access to people who can
help with all these processes -- librarians.
The website is not designed to be a
comprehensive list of resources. Instead, it is
designed to highlight the most significant
resources and provide starting points for
learning and research. The content of the
website is very much like the content of
traditional library pathfinders.

Summary

Information architecture is about answering
difficult questions regarding users, context,
and content. It is not possible to be
everything to everybody, therefore you need
to define who your primary audience is.
Users. Your information system is a part of
a larger institution, therefore it behooves
you to make sure the system fits into the
institution's goals and objectives. Context.
The world of information is too large for any
system to embody, and therefore you need to
limit the scope of your collection. Content.
Once you answer the questions regarding
users, context, and content, write down the

answers. Use them as guidelines for a
specific period of time (at least one year),
and then regularly revisit the guidelines. On
your mark. Get set. Go. Not, fire and then
aim.

16

MyLibrary API Tutorial

This MyLibrary Applications Programmer Interface (API) tutorial gives the reader an
overview of how to use the MyLibrary modules. It is only an introduction. The reader is
expected to understand the principles of basic object-oriented Perl programming.

By the end of the tutorial the reader should be able to: create sets of facets, create sets of
terms, create sets of librarians, create sets of location types, create sets of resources,
classify librarians and resources with terms, work with sets of resources assoicated with
particular sets of terms, output the resources' titles, descriptions and locations, create a
freetext index of MyLibrary content, harvest OAI repositories and cache the content in a
MyLibrary database.

Initialization

To include MyLibrary into your scripts you "use" it:

include the whole of MyLibrary
use MyLibrary::Core;

This will enable all the necessary modules. You can use selected modules if you so
desire. This will save you a bit of RAM and compile time, but not a whole lot. For
example:

include just selected modules
use MyLibrary::Facet;
use MyLibrary::Term;

Make your life easy. Just include the whole of MyLibrary. See MyLibrary::Core's pod for
more information.

Configuration

Each installation of the MyLibrary modules is configured, by default, to work against at
least one MyLibrary instance. This instance was created during the make process. When
you include MyLibrary::Core, the default instance will be read from and written to.

If you want to read and write to a different instance of MyLibrary, then you will need to
use the MyLibrary::Config methods to specify the database options for that instance.

Facets

One of the first things you will want to do with any MyLibrary instance is create a set of
facets.

17

Facets are a set of broad classification headings. Most instances of MyLibrary will
contain some sort of Subjects facet to denote the "aboutness" of items. Other possible
facets include Formats or Audiences. Formats could denote the physical manifestations of
information resources. Audiences might denote who are the intended users of information
resources.

Here are a number of ways to create and manipulate facet objects:

create a facet object
$facet = MyLibrary::Facet->new;

set the facet's name and note
$facet->facet name('Subjects');
$facet->facet note('The "aboutness" of items');

save the facet to the database
Scode = S$facet->commit;
if ($Scode ne 1) { die 'commit failed' }

get the facet's id; think "database key"
$id = $facet->facet id;

get the facet's name and note
$name = S$facet->facet name;
$note $facet->facet_note;

get specific facet based on an id
$facet = MyLibrary::Facet->new(id => 1);

Q

Given the methods outlined above, you could use the following code to create, save,
retrieve, and then display a facet:

configure
Sname = 'Formats';
$note = 'The physical manifestation of resources';

create, save, retrieve, and display
$facet = MyLibrary::Facet->new;
$facet->facet name($name);
$facet->facet note($note);

save
Sfacet->commit;
$id = $facet->facet id;

retrieve
$facet = MyLibrary::Facet->new(id => $id);

display

print ' ID: ' . $facet->facet_ id . "\n";
print 'Name: ' $facet->facet name . "\n";
print 'Note: ' . $facet->facet note . "\n";

18

You will often want to get a list of all the facets in your system in order to facilitate
browsable interfaces to your collection of resources. The get_facets method is used for
this purpose. Since get_facets returns an array of objects, you can now loop through the
array and process each item. This is how you might display them:

create a list of all the facets in the system
@facets = MyLibrary::Facet->get facets;

print "ID\tName\t (Note)\n";
foreach $f (@facets) {

print $f->facet id . "\t
$f->facet name . "\t("
$f->facet note . ")\n"

Read the scripts named manage-facets.pl and subroutines.pl to see an example of how to
manage sets of facets from a terminal-based interface. For more information read the pod
of MyLibrary::Facets.

Terms

Terms are a set of narrower classification headings, and each term is associated with one
and only one facet -- its parent. Terms are expected to be the controlled vocabulary of
your MyLibrary implementation, and consequently they are expected to be assigned to
one or more information resources. Terms might include Astronomy, Music, or
Mathematics, and these terms may have a parent facet named Subjects. Other terms
might be Book, Journal, or Image, and these terms might be associated with a facet called
Formats. Still other examples include Catalog, Dictionary, or Encyclopedia, and could
associated with a facet named Research Tools.

The methods of MyLibrary term objects are very similar to the methods of facet objects:

create a term object
$term = MyLibrary::Term->new;

set the term's name and note
$term->term name('Dictionary');
$term->term note('A list of word definitions');

create a facet named Research Tools

$facet = MyLibrary::Facet->new;

$facet->facet name('Research Tools');

$facet->facet note('Traditional library objects like dictionaries.');
Sfacet->commit;

associate (join) this term to that facet
Sterm->facet_id($facet->facet_id);

save the term to the database
Scode = S$term->commit;

19

if ($Scode ne 1) { die 'commit failed' }

get the term's id; think "database key"
$id = Sterm->term id;

get the term's name and note
$name = Sterm->term name;

$note = Sterm->term note;

get a specific term based on its id
$term = MyLibrary::Term->new(id => 1);

Given the methods outlined above, you could use the following code to create, save,
retrieve, and then display relevant term data:

configure

$term name = 'Sophomores';

$term note = 'Students in the second year of college';
$facet name = 'Audiences’;

$facet note = 'People who use your services';

create a term

$term = MyLibrary::Term->new;
$term->term name(Sterm_ name);
$term->term note(Sterm note);

create a facet

$facet = MyLibrary::Facet->new;

$facet->facet_ name($facet_name);
$facet->facet_note($facet_note);
Sfacet->commit;

join and save
Sterm->facet_id($facet->facet_id);
Sterm->commit;

get and display

$id = Sterm->term id;

$term = MyLibrary::Term->new(id => $id);

$facet = MyLibrary::Facet->new(id => $term->facet id);

print ' ID: ' . S$term->term id . "\n";
print ' Name: ' . $term->term name . "\n";
print ' ©Note: ' . $term->term note . "\n";
print 'Parent: ' . $facet->facet name . "\n";

Like the facets, you will often want to get a list of all the terms in your system in order to
facilitate some sort of browse function. The get_terms method is used for this purpose:

get all the terms
@terms = MyLibrary::Term->get terms;
foreach $term (Q@Qterms) { print 'Term:

$term->term name . "\n" }

Creating a list of sorted terms involves creating a list of term ids and calling the sort
method denoting the sorting field, usually name:

20

get all terms
@terms = MyLibrary::Term->get terms;

print
foreach $t (@terms) { print 'Term:

$t->term name . "\n" }

create a list of term ids
foreach $t (@terms) { push @term ids, $t->term id }

get a sorted list of term id
@terms = MyLibrary::Term->sort(term ids => [@term ids],
type => 'name');

print, again
foreach $t (Q@terms) {

$term = MyLibrary::Term->new(id => $t);
print 'Term: ' $term->term name . "\n";

After terms have been assigned to MyLibrary resource objects a number of other useful
term methods present themselves, but they are outlined in a later section named "Terms
and resources revisited".

Read the scripts named manage-terms.pl and subroutines.pl to see how you can manage
sets of terms from a terminal-based interface. For more detail read the MyLibrary::Term
pod.

Librarians

Question: What do libraries have that Yahoo and Google don't have? Answer: Librarians
-- people who are willing and able to address the information needs of others. That is why
librarian objects are a part of MyLibrary.

Think of librarian objects as information resources with the characteristics of people:
name, address, telephone number, and URL of home page. In libraries librarians usually
have subject specialties, and that is why it is possible to "catalog" librarians with
facet/term combinations.

The setting and getting of MyLibrary librarian objects works like this:

create a librarian
$librarian = MyLibrary::Librarian->new;

give the librarian characteristics
$librarian->name('Fred Kilgour');
$librarian->email('kilgour@oclc.org');
$librarian->telephone('l (800) 555-1212");
$librarian->url('http://oclc.org/~kilgour/"');

create an astronomy term as a child of the subjecs facet

21

$term = MyLibrary::Term->new;
$term->term name('Astronomy');

$term->term note('Studying the stars');

$facet = MyLibrary::Facet->new(name => 'Subjects');
Sterm->facet_id($facet->facet_id);

Sterm->commit;

associate (join) the librarian with astronomy
$librarian->term ids(new => [$term->term id]);

save the librarian
$librarian->commit;

get the librarian
$id = $librarian->id;
$librarian = MyLibrary::Librarian->new(id => $id);

display basic information about the librarian
print ' ID: ', S$librarian->id, "\n";
print ' Name: ', S$librarian->name, "\n";
print Email: ', $librarian->email, "\n";

14

14

print 'Telephone: $librarian->telephone, "\n";
print 'Home page: $librarian->url, "\n";

display each of their associated subject areas
@term_ids = $librarian->term ids;
foreach $id (Q@term ids) {

Sterm = MyLibrary::Term->new(id => $id);
print ' Term: ', $term->term name, "\n";

Just like everything else, you might want to pull all of the librarians out of the system.
The class method get_librarians is used for this purpose. It returns an array of librarian
objects:

get all librarians
@librarians = MyLibrary::Librarian->get librarians;

print each librarian's name and email address
foreach $1 (@librarians) { print $l->name . ' <' . $l->email . ">\n"

}

Question: Who are you going to call? Answer: The Librarian. By creating a set of
facet/term combinations and associating them with information resources you can
effectively group like things together. By associating the same facet/term combinations to
librarians you can begin to make connections between information resources and
librarians. Thus, when displaying lists of information resources, consider adding the
associated librarian's name and contact information to the list.

For more detail regarding librarian objects read the MyLibrary::Librarian pod.

22.

Location types

The world of information resources is made up of many different types. For example
there are books, journals, and websites. To complicate matters, things like the same
books or journals can be manifested in physical or digital form. Heck, the book or journal
could even exist in a number of physical forms such as a codex or microfiche or maybe
even a film. Because of these things a single information resource may have many
different locations and each of these locations may be of different types: call numbers,
URL's, buildings, etc. Because all information resources have some sort of location will
need to create at least one location type in your MyLibrary implementation.

Location types are just labels for different types of locations. For example, almost all
MyLibrary implementations will have a location type such as Internet Resource, or URL.
If the information resources in your MyLibrary implementation includes books --
physical, every-day books -- then another location type for your implementation might be
Call Numbers. Suppose you have an electronic journal and one URL associated with the
journal is a pointer to the content and another URL points to a help file. In this case you
might want to have an additional location type such as Help Location.

Here are an example of how you might implement a simple Internet resource location
type:

create a location type
$location type = MyLibrary::Resource::Location::Type->new;

give it characteristics
$location type->name('URL');
$location type->description('A type of Internet resource');

save it and get its id
$location type->commit;
$id = $location_type->location_type id;

get a location by an id and display its data
$location type = MyLibrary::Resource::Location::Type->new(id => $id);

print ' ID: ' . S$location type->location type id . "\n";
print ' Type: ' . $location_type->name . "\n";
print ' Note: ' . $location_ type->description . "\n";

Like most of the other modules, MyLibrary::Resource::Location:: Type provide a class
method for getting everything. In this case it is all_types, and it returns an array of
location type ids:

get all location types
@location types = MyLibrary::Resource::Location::Type->all types;

display them
foreach $1 (@location types) {

$location = MyLibrary::Resource::Location::Type->new(id => $1);
print 'Type: ' $location->name . "\n";

23

}

You can also create a location type object by calling it by name, but the name must exist
in the underlying database. To do this you supply the name parameter to the new method:

get the location type object named URL
$location type=MyLibrary::Resource::Location: :Type>new(name=>'URL");

print

print ' Location type ID: ' $location type->location type id."\n";
print 'Location type name: ' $location_ type->name ."\n";
print 'Location type note: ' $location type->description ."\n";

Because information resources are manifested in many ways, and since each of these
ways are usually associated with different types of "addresses" (such as URLs or call
numbes) MyLibrary provides as means of creating and listing such types.

See the terminal-based program called location-types.pl as well as the pod for
MyLibrary::Resource::Location::Type for more detail.

Resources

Now the fun really begins.

With the exception of the librarians, all of the previous sections essentially described how
to create sets of controlled vocabularies. Facets. Terms. Location types. You are now
ready to create lists of information resources, describe them, classify them, and save them
to the underlying database. Once you have built your collection you are expected to write
reports against it implementing various services such as: browse, search, What's New?,
Find More Like This One, most popular, most useful, export subsets to a file, send
subsets as email, create RSS feeds, etc. In today's world of changing user expectations it
is not only about collections. It is more about the effective combination of collections and
services.

MyLibrary resource objects include methods for setting and getting the objects'
characteristics, and these characteristics are a superset of the basic fifteen Dublin Core
elements. There is an implicit one-to-one relationship between the basic Dublin Core
element names and many of the MyLibrary resource object methods/objects, listed
below:

contributor - MyLibrary::Resource->contributor
coverage - MyLibrary::Resource->coverage
creator - MyLibrary::Resource->creator

date - MyLibrary::Resource->date

description - MyLibrary::Resource->note
format - MyLibrary::Resource->format
identifier - MyLibrary::Resource::Location

Nk L=

24

8. language - MyLibrary::Resource->language
9. publisher - MyLibrary::Resource->publisher
10. relation - MyLibrary::Resource->relation
11. rights - MyLibrary::Resource->rights

12. source - MyLibrary::Resource->source

13. subject - MyLibrary::Resource->subject

14. title - MyLibrary::Resource->name

15. type - MyLibrary::Resource->type

This mapping makes it relatively easy to store Dublin Core-based descriptions of
information resources into a MyLibrary implementation. The items described in OAI-
PMH data repositories come immediately to mind.

As a simple example of setting and getting values of MyLibrary resource objects, let's set
and get a link to a fictional electronic version of The Adventures of Huckleberry Finn:

create a resource object
$resource = MyLibrary::Resource->new;

describe it

$resource->creator('Mark Twain');

$resource->format ('ebook');

$resource->language('en');

$resource->name('The Adventures of Huckleberry Finn');
$resource->note('This is a coming of age story.');
$resource->subject('young adult reading');
$resource->type('text/html');

give it a URL

$location type = MyLibrary::Resource::Location::Type->new
(name =>'URL');

$resource->add_location(location => 'http://library.org/finn.html’,
location_type => $location_ type->location_ type id);

save it
Sresource->commit;

get it
$id = S$Sresource->id;

$resource = MyLibrary::Resource->new(id => $id);

output the data

print ' Author: ' . Sresource->creator . "\n";
print ' Format: ' . S$Sresource->format . "\n";
print ' Language: ' . $resource->language . "\n";
print ' Title: ' . Sresource->name . "\n";
print ' Description: ' . $resource->note . "\n";
print ' Subject: ' . $Sresource->subject . "\n";
print ' MIME type: ' . S$resource->type . "\n";

get the url; assume there is only one
@locations = $resource->resource_locations;
print ' URL: ' . $locations[0]->location . "\n";

25

With the exception of the location attributes, this should be pretty straight-forward.
(Remember, information resources can have more than one location and more than one
location type. This is why setting and getting the location of resource objects is not as
simple as the other attributes.)

While the procedure outlined above is functional, it is not necessarily complete. It does
not take advantage of your facet/term combinations. Let's assume you have a facet called
Subjects. Let's also assume you have the terms American Literature and Young Adult
Reading assigned to the Subjects facet. Given this you can use the related_terms method
to classify a resource with these terms. Very, very important! To get the terms back out
you again use the related_terms method. It returns an array of term ids (keys):

get the facet id for subjects
$facet = MyLibrary::Facet->new(name => 'Subjects');
$facet _id = $facet->facet id;

create the subject term amerian literature
$term = MyLibrary::Term->new;
$term->term name('American Literature');
$term->term note('Writings of the New World');
$Sterm->facet_id($facet id);

Sterm->commit;

$american literature = $term->term id;

create the subject term young adult reading

$term = MyLibrary::Term->new;

$term->term name('Young Adult Reading');

$term->term note('Literature for the middle schoolers');
$Sterm->facet_id($facet id);

Sterm->commit;

$young reading = $term->term id;

get huck finn and assume there is only one matching record
@resources = MyLibrary::Resource->new(

name => 'The Adventures of Huckleberry Finn');
Sresource = Sresources[0];
$resource->related_terms

(new => [$Samerican_ literature, $young reading]);
Sresource->commit;

output the data

print ' Author: ' . Sresource->creator . "\n";
print ' Format: ' . S$Sresource->format . "\n";
print ' Language: ' . $resource->language . "\n";
print ' Title: ' . Sresource->name . "\n";
print ' Description: ' . $resource->note . "\n";
print ' Subject: ' . $resource->subject . "\n";
print ' MIME type: ' . S$resource->type . "\n";

get the url; assume there is only one
@locations = $resource->resource_locations;
print ' URL: ' . $locations[0]->location . "\n";

get the related terms
@related_terms = $resource->related terms;

26

foreach $rt (@related_terms) {

print the term name
$term = MyLibrary::Term->new(id => $rt);
print '

Term : . Sterm->term name . "\n";

Read manage-resources.pl, subroutines.pl to learn how to implement these ideas in a
terminal-based environment. See the pod of MyLibrary::Resource for more detail
because there are many more methods to be found there.

A Zen Master once said, "Collections without services are useless, and services without
collections are empty." Use MyLibrary to create a collection of information resources,
and then use MyLibrary to provide services against the collection. Both are necessary in
order to meet the expectations of today's users of libraries.

Terms and resources revisited

Once you have created sets of MyLibrary resources and associated them with sets of
MyLibrary terms you can exploit a couple more term methods to query your MyLibrary
database.

You can use the MyLibrary::Term class method called related_resources to create a list
of resources associated with a term. For example, suppose you have a term named
Astronomy, then you could use the following code to list the names and descriptions of
all those resources:

require the necessary modules
use MyLibrary::Term;
use MyLibrary::Resource;

get the id for the astronomy term, assume there is only one
@terms = MyLibrary::Term->get terms

(field => 'name', value => 'Astronomy');
$term = MyLibrary::Term->new(id => @terms[0]->term id);
$astronomy = $term->term id;

create astronomy resources, #1 of 3
$resource = MyLibrary::Resource->new;
$resource->name('Stars amoung us');
Sresource->note('No, not movie stars');
$resource->related_terms(new => [Sastronomy]);
Sresource->commit;

resource #2 of 3

$resource = MyLibrary::Resource->new;
$Sresource->name('Guiding lights');
$resource->note('Soap operas and beyond');
$resource->related_terms(new => [Sastronomy]);
Sresource->commit;

resource #3 of 3

27

$resource = MyLibrary::Resource->new;

$resource->name('My Guide the the Galaxy');
$resource->note('As if the Hitchhikers was not good enough');
$resource->related_terms(new => [Sastronomy]);
Sresource->commit;

get all astronomy resources through the term
$term = MyLibrary::Term->new(id => $astronomy);
@resource_ids = $term->related_resources;

display information about the resources
foreach $id (@resource_ids) {

$resource = MyLibrary::Resource->new(id => $id);
print ' Name: ' . $resource->name . "\n";
print ' Note: ' . $resource->note . "\n\n";

The suggested_resources method allows you to set and get lists of resource ids
determined to be particularly useful. Think recommendations. For example, suppose
there is a resource called Most Cool Astronomy Site. Suppose also it is determined that
this particular site lives up to its name and when displaying lists of astronomy resources
you would like to highlight this one in particular. To do this you would first use the
suggested_resources method set this value:

get the id for astronomy; assume there is only one
@terms = MyLibrary::Term->get terms

(field => 'name', value => 'Astronomy');
$term = MyLibrary::Term->new(id => @terms[0]->term id);
$astronomy = $term->term id;

create an astronomy resource

$resource = MyLibrary::Resource->new;
$resource->name('Most Cool Astronomy Site');
$resource->related_terms(new => [Sastronomy]);

save and get its id (key)
Sresource->commit;
$id = S$Sresource->id;

get the astronomy term
$term = MyLibrary::Term->new(id => $astronomy);

denote our resource as a suggested item for astronomy, and save
$term->suggested_resources(new => [$id]);
Sterm->commit;

You can then list all the resources associated with a term and then specify which ones are
recommended:

get the id for astronomy; assume there is only one term
@terms = MyLibrary::Term->get terms

(field => 'name', value => 'Astronomy');
$term = MyLibrary::Term->new(id => @terms[0]->term id);

28

get all astronomy resource ids and suggestion ids
@resources = S$term->related resources(sort => 'name');
@suggestions $term->suggested_resources;

process each resource
foreach $r (Q@resources) {

get the resource and print its name
$resource = MyLibrary::Resource->new(id => $r);
print ' Name: ' . $resource->name;

loop through each suggestion
foreach $s (@suggestions) {

compare suggestion and resource ids

if ($s == $r) {

specify this as suggested resource
print ' (suggested)’';
last;

}

print "\n";

You will often want work with entire sets or subsets of resources from your MyLibrary
implementation, and the get_resources method is used for this purpose. Once you get the
set of resources you are expected to loop through them and extract the ones you really
need. Here is a simple way to get all the resources as objects and print their names:

get all resources and display
@resources = MyLibrary::Resource->get resources;
foreach S$resource (@resources) { print $resource->name . "\n" }

You can do the same thing, but return a sorted list

get a sorted list, by name, of resources
@resources = MyLibrary::Resource->get resources(sort => 'name');
foreach S$resource (@resources) { print $resource->name . "\n" }

Besides the basic Dublin Core elements, MyLibrary allows you to assign additional
attributes to resources. The first of note is foreign key through the fkey method. This is
intended to store things like OCLC numbers, catalog record numbers, or OAI identifiers
in MyLibrary resource objects. By combining the tkey values with things like URL it is
often possible to link to back to some other list of information resources. You set and get
fkey values just like most of the other attributes:

create a resource
$resource = MyLibrary::Resource->new;

29

set the name and fkey value
$Sresource->name('Tom Sawyer Rides Again');
$resource->fkey('123457"');
Sresource->commit;

print it
print ' Foreign key: ' . $resource->fkey . "\n";

The lcd ("lowest common denominator") method is intended to denote information
resources that are useful to anybody, not restricted to any MyLibrary term. For example,
most librarians will believe the catalog is a tool useful for everybody for every discipline.
A general encyclopedia and dictionary are other examples. Denote a resource as a
"lowest common denominator" resource like this:

create and denote a resource as an "lcd" resource
$resource = MyLibrary::Resource->new;
$resource->name('Library catalog');
$resource->lcd(1l);

Sresource->commit;

To get a list of all the resource objects denoted as lowest common denominator resources,
use the class method lcd_resources:

get all "lcd" resources and display

@lcd resources = MyLibrary::Resource->lcd_resources;

print "These resources are useful to everyone:\n";

foreach $r (@lcd resources) { print "\t" . $r->name . "\n" }

Through the gsearch_prefix, gsearch_suffix, and gsearch_redirct methods you are able to
reverse engineer many Internet search engines. Take a simple Google search for the word
cat, http://www.google.com/search?q=cat. This URL can be divided into at least three
parts: 1) the root (http://www.google.com/), 2) a prefix (search?q=), 3) the query itself
(cat), and 4) an optional suffix (null in this example).

You might use this code to create a resource for Google and add a search prefix to it:

create a resource describing Google

$resource = MyLibrary::Resource->new;
S$resource->name('Google');

$resource->note('A very popular Internet index');

get the location type of URL

$location type = MyLibrary::Resource::Location::Type->new
(name => 'URL');

$type_id = $location_type->location type id;

give the resource a URL
$resource->add_location(location => 'http://www.google.com/',
location type => $type id);

add a quick search prefix and save
$resource->gsearch prefix('search?q=");

30

Sresource->commit;
$id = S$Sresource->id;

begin echoing results

$Sresource = MyLibrary::Resource->new(id => $id);
print ' Title: ' . $resource->name . "\n";
print ' Note: ' . Sresource->note . "\n";

get the location; assume there is only one
@locations = $resource->resource_locations;

echo more results
print ' URL: ' . $locations[0]->location . "\n";
print ' Prefix: ' $resource->gsearch prefix . "\n";

Now suppose you have some sort of HTML form that accepts text input. Using the
gsearch_redirect method the input can be transformed into a URL to search the resource.
Something like this:

get a query
Squery = 'foobar';

get the Google resource; assume there is only one
@resources = MyLibrary::Resource->new(name => 'Google');
Sresource = S$Sresources[0];

get the location; assume there is only one
@locations = $resource->resource_locations;
$root_url = $locations[0]->location;

build a URL to search

Surl = $resource->gsearch redirect(resource_id => $resource->id,
gsearch_arg => $query,
primary location => $root_url);

display in an HTML snippet
print "Click here to search Google for
'$query’' .\n";

Take this technique a step further. Suppose your MyLibrary implementation contains
records from your library catalog. Suppose each MyLibrary resource record includes an
fkey value pointing to the full record in the catalog. Suppose that you also have a
MyLibrary record describing your catalog, and that record is complete with a
gsearch_prefix and optional gsearch_suffix values. Using the gsearch_redirect method
you could display brief records on a Web page and link back to the full record in your
library catalog by using the fkey value as the gsearch_arg attribute.

Implementing search

This section outlines a method for making the content of your MyLibrary implementation
searchable.

31

MyLibrary is essentially a relational database application. As such, searching the
database requires queries be converted into SQL. By definition these SQL queries must
specify what fields to search. Unfortunately people expect to perform freetext queries
against sets of content, not necessarily fielded searches. Moreover, people increasingly
expect relevancy ranked output as well as output sorted by this, that, and the other thing.
For these reasons you are encouraged to use an intermediary indexing application to
implement searchability instead of querying the database directly.

Making your MyLibrary content searchable through an intermediate indexer uses this
process:

Write a report against MyLibrary.

Feed the report to the indexer.

Index the report.

Provide a Perl interface to search the index.

Search results are integers -- MyLibrary database keys.
Use the keys to get data from MyLibrary.

Reformat the data for display and return it to the user.

Nk W=

Swish-e is a good indexer. Simple, fast, and it comes with a Perl API. This will be the
indexer in this example, but something like Plucene would work just as well.

The first step is to write a report against the MyLibrary database. Swish-e expects its
input to look much like HTML. The following code outputs a very simple report
containing only the titles and notes of every resource in a MyLibrary instance. The report
is in a form swish-e expects:

require
use MyLibrary::Resource;

first, get all of the resource ids
@resource ids = MyLibrary::Resource->get ids;

process each id
foreach $resource_id (@resource_ids) {

get a resource
$resource = MyLibrary::Resource->new(id => $resource_ id);

get its id, title, and note

$id = Sresource->id;
Stitle = S$Sresource->name;
Snote = Sresource->note;

build the report

Soutput = '';

Soutput .= '<html>"';

Soutput .= '<head>';

$output .= "<meta name='title' content='S$title' />";
Soutput .= "<meta name='note' content='S$note' />";
$output .= '</head>';

32

Soutput .= '<body>';

Soutput .= "<hl>$title</hl1>";
Soutput .= "<p>S$note</p>";
$output .= '</body>';

Soutput .= '</html>"';

output a swish-e header

print "Path-Name: $id\n";

print "Content-length: " scalar(length $output) . "\n";
print "Document-Type: HTML*\n";

print "\n";

output the report
print "S$output";

The next step is to build a configuration file telling swish-e what to look for in the report.
In our case the configuration needs to know about the title and note, and the configuration
could be this simple:

define fields to index and make searchable
MetaNames title note
PropertyNames title note

define the location and name of the resulting index
IndexFile ./mylibrary.idx

Finally, you need to run your report generator and pipe the output to swish-e specifying
the configuration file. You can do this from the command line. Assuming your report
generator is called mylibrary2swish.pl and your swish-e configuration file is called
mylibrary2swish.cfg, then the command might look like this:

./mylibrary2swish.pl | swish-e -c ./mylibrary2swish.cfg \
-S prog -i stdin

The result should be a two files, mylibrary.idx and mylibrary.idx.prop. These files are
your swish-e index and you should be able to search them from the command line using
the swish-e binary. Remember, you only included name and note in your output so only
those fields will be searched. Also, queries will only return ids, not words.

The next step is to provide the ability to search the index. As queries are accepted the
swish-e Perl API is used to search the index. Queries return MyLibrary keys, and these
keys are used to look up the values of resources:

require the necessary modules
use MyLibrary::Resource;
use SWISH::API;

define the location of your index
$INDEX = './mylibrary.idx';

get the input

33

print "Enter a query. ";
chop (my $query = <STDIN>);

search the index

Sswish = SWISH::API->new(S$INDEX);
$Sresults = $swish->Query($query);
Shits Sresults->Hits;

branch according to the number of hits
if (shits) {

print "Your search ($query) returned $hits hit(s).\n\n";
Scounter = 0;

process each result
while (S$result = $results->NextResult) {

get the id (key)
$id = $result->Property("swishdocpath");

get the resource, title, and note

$resource = MyLibrary::Resource->new(id => $id);
Stitle = $Sresource->name;

$Snote = S$resource->note;

increment the counter
Scounter++;

print the result
print "S$counter. $title - $note\n\n";

}
}
else {

print "No hits. Sorry.\n";
}

This section has outlined the most basic of search interfaces. Your reports sent to swish-e
will want to be much more verbose.

For more information see index-resources.pl, index-resources.cfg, resources2swish.pl,
and search.pl that came with the distribution. These files implement a more full-featured,
terminal-based program for search.

MyLibrary and OAI

Because the MyLibrary database so closely resembles the basic Dublin Core elements,
and because OAI requires data repositories to support Dublin Core, it is almost trivial to
harvest the content of OAI repositories and cache it to a MyLibrary database.

34

The following script does just that, and in a nutshell here is how it works:

Define the repository to harvest.

Create a facet called Formats, if it doesn't exist.
Create a term called Images, if it doesn't exist.
Create a location type called URL, if it doesn't exist.
Harvest all the records from the repository.

Loop through each harvested record.

Create a MyLibrary resource object.

Fill the resource with attributes.

. Save the resource.

10. Go to Step #6 'till done.

WRTANRE WD

include the necessary modules
use MyLibrary::Core;
use Net::0AI::Harvester;

define the repository
$repository = 'http://infomotions.com/gallery/ocai/index.pl’;

check for a facet called Formats
$facet = MyLibrary::Facet->new;
if (! MyLibrary::Facet->get facets
(value => 'Formats', field => 'name')) {

create it
$facet->facet name('Formats');
$facet->facet_ note
('Types of physical items embodying information.');
Sfacet->commit;
print "\nThe facet Formats was created.\n";

}

else {
already exists
$facet = MyLibrary::Facet->new(name => 'Formats');
print "\nThe facet Formats already exists.\n";

}

remember this facet id
$facetID = $facet->facet_ id;

check for a term named Images
$term = MyLibrary::Term->new;
if (! MyLibrary::Term->get terms
(value => 'Images', field => 'name')) {

create it

$term->term name('Images');
$term->term note('Photographs or paintings.');
Sterm->facet_id($facetID);

Sterm->commit;

35

print "The term Images was created.\n";

}

else {
it already exists
$term = MyLibrary::Term->new(name => 'Images');
print "The term Images already exists.\n";

}

remember this term id
$imageTermID = $term->term id;

check for a location type called URL
$location type = MyLibrary::Resource::Location::Type->new;
if (! MyLibrary::Resource::Location: :Type->new(name => 'URL')) {

create it

$location type->name('URL');

$location type->description('A type of Internet resource.');
$location type->commit;

print "The location type URL was created.\n";

}
else {
it already exists
$location type = MyLibrary::Resource::Location::Type->new
(name => 'URL');
print "The location type URL already exists.\n";
}

remember the location type id
$location type id = $location_ type->location_type id;

create a harvester and get the data
Sharvester = Net::0AI::Harvester->new('baseURL' => $repository);
$records = $harvester->listAllRecords('metadataPrefix' => 'oai dc');

process each record
while ($record = S$records->next) {

$FKey = $record->header->identifier;
$Smetadata = Srecord->metadata;

Sname = Smetadata->title;
@description = $metadata->description;
$description = join (' ', @description);
Slocation = Smetadata->identifier;

print "$name...";

check to see if it already exits
if (! MyLibrary::Resource->new(fkey => $FKey)) {

create it
$resource = MyLibrary::Resource->new;

36

S$resource->name($name) ;
$resource->note($description);
Sresource->fkey($FKey);
$resource->related terms(new => [$imageTermID]);
$resource->add_location

(location => $location,

location_type => $location_ type id);
Sresource->commit;

print "added (", S$resource->id, ").\n";
}
else {
already got it
print "already exists.\n";
}
}
done
print "\nDone\n";
exit;

While this was the longest example in this tutorial, this particular OAI to MyLibrary
interface is very rudimentary. See the script named images2mylibrary.pl from the
distribution to see how you can harvest OAI sets. See doaj2mylibrary.pl to see how you
can more accurately classify incoming resources based on set names. The really
enterprising reader will figure out ways to read the incoming Dublin Core subject fields
and create facet/term combinations accordingly.

Summary

Unlike version 2.x of MyLibrary, version 3.x is more like a toolbox and less like a turn-
key application. Developers are expected to read and write values to the MyLibrary
database, manipulate these values to create sets of information services.

The examples above point to terminal-based scripts implementing the described concepts.
The distribution comes with another set of scripts implementing these ideas using a Web-
based interface. They use all of the concepts outlined above but they are CGI scripts
implemented in a more graphical interface.

Use MyLibrary in conjunction with other Perl modules. In a more traditional library you
might consider reading sets of MARC records to create a sort of online catalog. Provide
an SRU interface to your indexed content and then transform the XML returned from the
SRU server into email messages or RSS feeds. Create CGI scripts that return Javascript
that simply write to the document window. Then call these CGI scripts from within
HTML <script> elements. This will enable HTML authors to incorporate MyLibrary
content into their pages. You might harvest data from various but similar OAI
repositories to create subject-specific collections. Index the collection and provide an

37

interface to it. You might create Web-based input screens allowing authors to submit
information about publications thus implementing a sort of institutional repository. Use
your imagination. Think a bit outside the box.

When you've got a hammer everything looks like a nail. While MyLibrary is not
necessarily a perfect hammer, it can address many of the needs in libraries to create,
maintain, and distribute classified lists of information resources. The key to success is
discovering ways to re-purpose these lists meeting the expressed needs of library users.

3R

