Crowd sourcing the Great Books

This posting describes how crowd sourcing techniques are being used to determine the “greatness” of the Great Books.

The Great Books of the Western World is a set of books authored by “dead white men” — Homer to Dostoevsky, Plato to Hegel, and Ptolemy to Darwin. [1] In 1952 each item in the set was selected because the set’s editors thought the selections significantly discussed any number of their 102 Great Ideas (art, cause, fate, government, judgement, law, medicine, physics, religion, slavery, truth, wisdom, etc.). By reading the books, comparing them with one another, and discussing them with fellow readers, a person was expected to foster their on-going liberal arts education. Think of it as “life long learning” for the 1950s.

I have devised and implemented a mathematical model for denoting the “greatness” of any book. The model is based on term frequency inverse document frequency (TFIDF). It is far from complete, nor has it been verified. In an effort to address the later, I have created the Great Books Survey. Specifically, I am asking people to vote on which books they consider greater. If the end result is similar to the output of my model, then the model may be said to represent reality.

charts The survey itself is an implementation of the Condorcet method. (“Thanks Andreas.”) First, I randomly select one of the Great Ideas. I then randomly select two of the Great Books. Finally, I ask the poll-taker to choose the “greater” of the two books based on the given Great Idea. For example, the randomly selected Great Idea may be war, and the randomly selected Great Books may be Shakespeare’s Hamlet and Plato’s Republic. I then ask, “Which is book is ‘greater’ in terms of war?” The answer is recorded and an additional question is generated. The survey is never-ending. After 100’s of thousands of votes are garnered I hope too learn which books are the greatest because they got the greatest number of votes.

Because the survey results are saved in an underlying database, it is trivial to produce immediate feedback. For example, I can instantly return which books have been voted greatest for the given idea, how the two given books compare to the given idea, a list of “your” greatest books, and a list of all books ordered by greatness. For a good time, I am also geo-locating voters’ IP addresses and placing them on a world map. (“C’mon Antartica. You’re not trying!”)

map The survey was originally announced on Tuesday, November 2 on the Code4Lib mailing list, Twitter, and Facebook. To date it has been answered 1,247 times by 125 people. Not nearly enough. So far, the top five books are:

  1. Augustine’s City Of God And Christian Doctrine
  2. Cervantes’s Don Quixote
  3. Shakespeare’s Midsummer Nights Dream
  4. Chaucers’s Canterbury Tales And Other Poems
  5. Goethe’s Faust

There are a number of challenging aspects regarding the validity of the survey. For example, many people feel unqualified to answer some of the randomly generated questions because they have not read the books. My suggestion is, “Answer the question anyway,” because given enough votes randomly answered questions will cancel themselves out. Second, the definition of “greatness” is ambiguous. It is not intended to be equated with popularity but rather the “imaginative or intellectual content” the book exemplifies. [2] Put in terms of a liberal arts education, greatness is the degree a book discusses, defines, describes, or alludes to the given idea more than the other. Third, people have suggested I keep track of how many times people answer with “I don’t know and/or neither”. This is a good idea, but I haven’t implemented it yet.

Please answer the survey 10 or more times. It will take you less than 60 seconds if you don’t think about it too hard and go with your gut reactions. There are no such things as wrong answers. Answer the survey about 100 times, and you will may get an idea of what types of “great books” interest you most.

Vote early. Vote often.

[1] Hutchins, Robert Maynard. 1952. Great books of the Western World. Chicago: Encyclopedia Britannica.

[2] Ibid. Volume 3, page 1220.

Great Books data set

screenshot This posting makes the Great Books data set freely available.

As described previously, I want to answer the question, “How ‘great’ are the Great Books?” In this case I am essentially equating “greatness” with statistical relevance. Specifically, I am using the Great Books of the Western World’s list of “great ideas” as search terms and using them to query the Great Books to compute a numeric value for each idea based on term frequency inverse document frequency (TFIDF). I then sum each of the great idea values for a given book to come up with a total score — the “Great Ideas Coefficient”. The book with the largest Coefficient is then considered the “greatest” book. Along the way and just for fun, I have also kept track of the length of each book (in words) as well as two scores denoting each book’s reading level, and one score denoting each book’s readability.

The result is a canonical XML file named great-books.xml. This file, primarily intended for computer-to-computer transfer contains all the data outlined above. Since most data analysis applications (like databases, spreadsheets, or statistical packages) do not deal directly with XML, the data was transformed into a comma-separated value (CSV) file — great-books.csv. But even this file, a matrix of 220 rows and 104 columns, can be a bit unwieldily for the uninitiated. Consequently, the CSV file has been combined with a Javascript library (called DataTables) and embedded into an HTML for file general purpose use — great-books.htm.

The HTML file enables you to sort the matrix by column values. Shift click on columns to do sub-sorts. Limit the set by entering queries into the search box. For example:

  • sort by the last column (coefficient) and notice how Kant has written the “greatest” book
  • sort by the column labeled “love” and notice that Shakespeare has written seven (7) of the top ten (10) “greatest books” about love
  • sort by the column labeled “war” and notice that something authored by the United States is ranked #2 but also has very poor readability scores
  • sort by things like “angel” or “god”, then ask yourself, “Am I surprised at what I find?”

Even more interesting questions may be asked of the data set. For example, is their a correlation between greatness and readability? If a work has a high love score, then it is likely it will have a high (or low) score from one or more of the other columns? What is the greatness of the “typical” Great Book? Is this best represented as the average of the Great Ideas Coefficient or would it be better stated as the value of the mean of all the Great Ideas? In the case of the later, which books are greater than most, which books are typical, an which books are below typical? This sort of analysis, as well as the “kewl” Web-based implementation, is left up the the gentle reader.

Now ask yourself, “Can all of these sorts of techniques be applied to the principles and practices of librarianship, and if so, then how?”

Great Books data dictionary

This is a sort of Great Books data dictionary in that it describes the structure and content of two data files containing information about the Great Books of the Western World.

The data set is manifested in two files. The canonical file is great-books.xml. This XML file consists of a root element (great-books) and many sub-elements (books). The meat of the file resides in these sub-elements. Specifically, with the exception of the id attribute, all the book attributes enumerate integers denoting calculated values. The attributes words, fog, and kincaid denote the length of the work, two grade levels, and a readability score, respectively. The balance of the attributes are “great ideas” as calculated through a variation Term Frequency Inverse Document Frequency (TFIDF) cumulating in a value called the Great Ideas Coefficient. Finally, each book element includes sub-elements denoting who wrote the work (author), the work’s name (title), the location of the file was used as the basis of the calculations (local_url), and the location of the original text (original_url).

The second file (great-books.csv) is a derivative of the first file. This comma-separated file is intended to be read by something like R or Excel for more direct manipulation. It includes all the information from great-books.xml with the exception of the author, title, and URLs.

Given either one of these two files the developer or statistician is expected to evaluate or re-purpose the results of the calculations. For example, given one or the other of these files the following questions could be answered:

  • What is the “greatest” book and who wrote it?
  • What is the average “great book” score?
  • Are there clusters of great ideas?
  • Which authors wrote extensively on what great ideas?
  • Is there a correlation between greatness and length and readability?

The really adventurous developer will convert the XML file into JSON and then create a cool (or “kewl”) Web interface allowing anybody with a browser to do their own evaluation and presentation. This is an exercise left up to the reader.

Measuring the Great Books

This posting describes how I am assigning quantitative characteristics to texts in an effort to answer the question, “How ‘great’ are the Great Books?” In the end I make a plea for library science.


With the advent of copious amounts of freely available plain text on the ‘Net comes the ability of “read” entire corpora with a computer and apply statistical processes against the result. In an effort to explore the feasibility of this idea, I am spending time answering the question, “How ‘great’ are the Great Books?

More specifically, want to assign quantitative characteristics to each of the “books” in the Great Books set, look for patterns in the result, and see whether or not I can draw any conclusions about the corpus. If such processes are proven effective, then the same processes may be applicable to other corpora such as collections of scholarly journal articles, blog postings, mailing list archives, etc. If I get this far, then I hope to integrate these processes into traditional library collections and services in an effort to support their continued relevancy.

On my mark. Get set. Go.

Assigning quantitative characteristics to texts

The Great Books set posits 102 “great ideas” — basic, foundational themes running through the heart of Western civilization. Each of the books in the set were selected for inclusion by the way they expressed the essence of these great ideas. The ideas are grand and ambiguous. They include words such as angel, art, beauty, courage, desire, eternity, god, government, honor, idea, physics, religion, science, space, time, wisdom, etc. (See Appendix B of “How ‘great’ are the Great Books?” for the complete list.)

In a previous posting, “Great Ideas Coefficient“, I outlined the measure I propose to use to determine the books’ “greatness” — essentially a sum of all TFIDF (term frequency / inverse document frequency) scores as calculated against the list of great ideas. TFIDF is defined as:

( c / t ) * log( d / f )


  • c = number of times a given word appears in a document
  • t = total number of words in a document
  • d = total number of documents in a corpus
  • f = total number of documents containing a given word

Thus, the problem boils down to determining the values for c, t, d, and f for a given great idea, 2) summing the resulting TFIDF scores, 3) saving the results, and 4) repeating the process for each book in the corpus. Here, more exactly, is how I am initially doing such a thing:

  1. Build corpus – In a previous posting, “Collecting the Great Books“, I described how I first collected 223 of the roughly 250 Great Books.
  2. Index corpus – The process used to calculate the TFIDF values of c and t are trivial because any number of computer programs do such a thing quickly and readily. In our case, the value of d is a constant — 223. On the other hand, trivial methods for determining the number of documents containing a given word (f) are not scalable as the size of a corpus increases. Because an index is essentially a list of words combined with the pointers to where the words can be found, an index proves to be a useful tool for determining the value of f. Index a corpus. Search the index for a word. Get back the number of hits and use it as the value for f. Lucene is currently the gold standard when it comes to open source indexers. Solr — an enhanced and Web Services-based interface to Lucene — is the indexer used in this process. The structure of the local index is rudimentary: id, author, title, URL, and full text. Each of the metadata values are pulled out of a previously created index file — great-books.xml — while the full text is read from the file system. The whole lot is then stuffed into Solr. A program called does this work. Another program called was created simply for testing the validity of the index.
  3. Count words and determine readability – A Perl module called Lingua::EN::Fathom does a nice job of counting the number of words in a file, thus providing me with a value for t. Along the way it also calculates a number of “readability” scores — values used to determine the necessary education level of a person needed to understand a given text. While I had “opened the patient” I figured it would be a good idea to take note of this information. Given the length of a book as well as its readability scores, I enable myself to answer questions such as, “Are longer books more difficult to read?” Later on, given my Great Ideas Coefficient, I will be able to answer questions such as “Is the length of a book a determining factor in ‘greatness’?” or “Are ‘great’ books more difficult to read?”
  4. Calculate TFIDF – This is the fuzziest and most difficult part of the measurement process. Using Lingua::EN::Fathom again I find all of the unique words in a document, stem them with Lingua::Stem::Snowball, and calculate the number of times each stem occurs. This gives me a value for c. I then loop through each great idea, stem them, and search the index for the stem thus returning a value for f. For each idea I now have values for c, t, d, and f enabling me to calculate TFIDF — ( c / t ) * log( d / f ).
  5. Calculate the Great Ideas Coefficient – This is trivial. Keep a running sum of all the great idea TFIDF scores.
  6. Go to Step #4 – Repeat this process for each of the 102 great ideas.
  7. Save – After all the various scores (number of words, readability scores, TFIDF scores, and Great Ideas Coefficient) have been calculated I save each to my pseudo database file called great-ideas.xml. Each is stored as an attribute associated with a book’s unique identifier. Later I will use the contents of this file as the basis of my statistical analysis.
  8. Go to Step #3 – Repeat this process for each book in the corpus, and in this case 223 times.

Of course I didn’t do all of this by hand, and the program I wrote to do the work is called

The result is my pseudo database file — great-books.xml. This is my data set. It keeps track all of my information in a human-readable, application- and operating system-independent manner. Very nice. If there is only one file you download from this blog posting, then it should be this file. Using it you will be able to create your own corpus and do your own analysis.

The process outlined above is far from perfect. First, there are a few false negatives. For example, the great idea “universe” returned a TFIDF value of zero (0) for every document. Obviously is is incorrect, and I think the error has something to do with the stemming and/or indexing subprocesses. Second, the word “being”, as calculated by TFIDF, is by far and away the “greatest” idea. I believe this is true because the word “being” is… being counted as both a noun as well as a verb. This points to a different problem — the ambiguity of the English language. While all of these issues will knowingly skew the final results, I do not think they negate the possibility of meaningful statistical investigation. At the same time it will be necessary to refine the measurement process to reduce the number of “errors”.

Measurment, the humanities, and library science

Measurement is one of the fundamental qualities of science. The work of Archimedes is the prototypical example. Kepler and Galileo took the process to another level. Newton brought it to full flower. Since Newton the use of measurement — the assignment of mathematical values — applied against observations of the natural world and human interactions have given rise to the physical and social sciences. Unlike studies in the humanities, science is repeatable and independently verifiable. It is objective. Such is not a value judgment, merely a statement of fact. While the sciences seem cold, hard, and dry, the humanities are subjective, appeal to our spirit, give us a sense of purpose, and tend to synthesis our experiences into a meaningful whole. Both of the scientific and humanistic thinking processes are necessary for us to make sense of the world around us. I call these combined processes “arscience“.

The library profession could benefit from the greater application of measurement. In my opinion, too much of the profession’s day-to-day as well as strategic decisions are based on antidotal evidence and gut feelings. Instead of basing our actions on data, actions are based on tradition. “This is the way we have always done it.” This is medieval, and consequently, change comes very slowly. I sincerely believe libraries are not going away any time soon, but I do think the profession will remain relevant longer if librarians were to do two things: 1) truly exploit the use of computers, and 2) base a greater number of their decisions on data — measurment — as opposed to opinion. Let’s call this library science.

Collecting the Great Books

In an effort to answer the question, “How ‘great’ are the Great Books?“, I need to mirror the full texts of the Great Books. This posting describes the initial process I am using to do such a thing, but the imporant thing to note is that this process is more about librarianship than it is about software.


The Great Books is/was a 60-volume set of content intended to further a person’s liberal arts education. About 250 “books” in all, it consists of works by Homer, Aristotle, Augustine, Chaucer, Cervantes, Locke, Gibbon, Goethe, Marx, James, Freud, etc. There are a few places on the ‘Net where the complete list of authors/titles can be read. One such place is a previous blog posting of mine. My goal is to use digital humanities computing techniques to statistically describe the works and use these descriptions to supplement a person’s understanding of the texts. I then hope to apply these same techniques to other corpora. To accomplish this goal I first need to acquire full text versions of the Great Books. This posting describes how I am initially going about it.

Mirroring and caching the Great Books

All of the books of the Great Books were written by “old dead white men”. It is safe to assume the texts have been translated into a myriad of languages, including English, and it is safe to assume the majority exist in the public domain. Moreover, with the advent of the Web and various digitizing projects, it is safe to assume quality information gets copied forward and will be available for downloading. All of this has proven to be true. Through the use of Google and a relatively small number of repositories (Project Gutenberg, Alex Catalogue of Electronic Texts, Internet Classics Archive, Christian Classics Ethereal Library, Internet Archive, etc.), I have been able to locate and mirror 223 of the roughly 250 Great Books. Here’s how:

  1. Bookmark texts – Trawl the Web for the Great Books and use Delicious to bookmark links to plain text versions translated into English. Firefox combined with the Delicious extension have proven to be very helpful in this regard. My bookmarks should be located at
  2. Save and edit bookmarks file – Delicious gives you the option to save your bookmarks file locally. The result is a bogus HTML file intended to be imported into Web browsers. It contains the metadata used to describe your bookmarks such as title, notes, and URLs. After exporting my bookmarks to the local file system, I contorted the bogus HTML into rudimentary XML so I could systematically read it for subsequent processing.
  3. Extract URLs – Using a 7-line program called, I loop through the edited bookmarks file and output all the URLs.
  4. Mirror content – Because I want/need to retain a pristine version of the original texts, I feed the URLs to wget and copy the texts to a local directory. This use of wget is combined with the output of Step #3 through a brain-dead shell script called
  5. Create corpus – The mirrored files are poorly named; using just the mirror it is difficult to know what “great book” hides inside files named annals.mb.txt, pg2600.txt, or whatever. Moreover, no metadata is associated with the collection. Consequently I wrote a program — — that loops through my edited bookmarks file, extracts the necessary metadata (author, title, and URL), downloads the remote texts, saves them locally with a human-readable filename, creates a rudimentary XHTML page listing each title, and creates an XML file containing all of the metadata generated to date.

The results of this 5-step process include:

The most important file, by far, is the metadata file. It is intended to be a sort of application- and operating system-independent database. Given this file, anybody ought to be able to duplicate the analysis I propose to do later. If there is only one file you download from this blog posting, it should be the metadata file — great-books.xml.

The collection process is not perfect. I was unable to find many of the works of Archimedes, Copernicus, Kepler, Newton, Galileo, or Freud. For all but Freud, I attribute this to the lack of translations, but I suppose I could stoop to the use of poorly OCR’ed texts from Google Books. I attribute the unavailability of Freud to copyright issues. There’s no getting around that one. A few times I located HTML versions of desired texts, but HTML will ultimately skew my analysis. Consequently I used a terminal-based program called lynx to convert and locally save the remote HTML to a plain text file. I then included that file into my corpus. Alas, there are always ways to refine collections. Like software, they are are never done.

Summary — Collection development, acquisitions, and cataloging

The process outlined above is really about librarianship and not software. Specifically, it is about collection development, acquisitions, and cataloging. I first needed to articulate a development policy. While it did not explicitly describe the policy it did outline why I wanted to create the collection as well as a few of each item’s necessary qualities. The process above implemented a way to actually get the content — acquisitions. Finally, I described — “cataloged” — my content, albiet in a very rudimentary form.

It is an understatement to say the Internet has changed the way data, information, and knowledge are collected, preserved, organized, and disseminated. By extension, librarianship needs to change in order to remain relevant with the times. Our profession spends much of its time trying to refine old processes. It is like trying to figure out how to improve the workings of a radio when people have moved on to the use of televisions instead. While traditional library processes are still important, they are not as important as the used to be.

The processes outline above illustrate one possible way librarianship can change the how’s of its work while retaining it’s what’s.

How “great” are the Great Books?

In the 1952 a set of books called the Great Books of the Western World was published. It was supposed to represent the best of Western literature and enable the reader to further their liberal arts education. Sixty volumes in all, it included works by Plato, Aristotle, Shakespeare, Milton, Galileo, Kepler, Melville, Darwin, etc. (See Appendix A.) These great books were selected based on the way they discussed a set of 102 “great ideas” such as art, astronomy, beauty, evil, evolution, mind, nature, poetry, revolution, science, will, wisdom, etc. (See Appendix B.) How “great” are these books, and how “great” are the ideas expressed in them?

Given full text versions of these books it would be almost trivial to use the “great ideas” as input and apply relevancy ranking algorithms against the texts thus creating a sort of score — a “Great Ideas Coefficient”. Term Frequency/Inverse Document Frequency is a well-established algorithm for computing just this sort of thing:

relevancy = ( c / t ) * log( d / f )


  • c = number of times a given word appears in a document
  • t = total number of words in a document
  • d = total number of documents in a corpus
  • f = total number of documents containing a given word

Thus, to calculate our Great Ideas Coefficient we would sum the relevancy score for each “great idea” for each “great book”. Plato’s Republic might have a cumulative score of 525 while Aristotle’s On The History Of Animals might have a cumulative score of 251. Books with a larger Coefficient could be considered greater. Given such a score a person could measure a book’s “greatness”. We could then compare the score to the scores of other books. Which book is the “greatest”? We could compare the score to other measurable things such as book’s length or date to see if there were correlations. Are “great books” longer or shorter than others? Do longer books contain more “great ideas”? Are there other books that were not included in the set that maybe should have been included? Instead of summing each relevancy score, maybe the “great ideas” can be grouped into gross categories such as humanities or sciences, and we can sum those scores instead. Thus we may be able to say one set of book is “great” when it comes the expressing the human condition and these others are better at describing the natural world. We could ask ourselves, which number of books represents the best mixture of art and science because their humanities score is almost equal to its sciences score. Expanding the scope beyond general education we could create an alternative set of “great ideas”, say for biology or mathematics or literature, and apply the same techniques to other content such as full text scholarly journal literatures.

The initial goal of this study is to examine the “greatness” of the Great Books, but the ultimate goal is to learn whether or not this quantitative process can be applied other bodies of literature and ultimately assist the student/scholar in their studies/research

Wish me luck.

Appendix A – Authors and titles in the Great Books series

  • AeschylusPrometheus Bound; Seven Against Thebes; The Oresteia; The Persians; The Suppliant Maidens
  • American State PapersArticles of Confederation; Declaration of Independence; The Constitution of the United States of America
  • ApolloniusOn Conic Sections
  • AquinasSumma Theologica
  • ArchimedesBook of Lemmas; Measurement of a Circle; On Conoids and Spheroids; On Floating Bodies; On Spirals; On the Equilibrium of Planes; On the Sphere and Cylinder; The Method Treating of Mechanical Problems; The Quadrature of the Parabola; The Sand-Reckoner
  • AristophanesEcclesiazousae; Lysistrata; Peace; Plutus; The Acharnians; The Birds; The Clouds; The Frogs; The Knights; The Wasps; Thesmophoriazusae
  • AristotleCategories; History of Animals; Metaphysics; Meteorology; Minor biological works; Nicomachean Ethics; On Generation and Corruption; On Interpretation; On Sophistical Refutations; On the Gait of Animals; On the Generation of Animals; On the Motion of Animals; On the Parts of Animals; On the Soul; Physics; Poetics; Politics; Posterior Analytics; Prior Analytics; Rhetoric; The Athenian Constitution; Topics
  • AugustineOn Christian Doctrine; The City of God; The Confessions
  • AureliusThe Meditations
  • BaconAdvancement of Learning; New Atlantis; Novum Organum
  • BerkeleyThe Principles of Human Knowledge
  • BoswellThe Life of Samuel Johnson, LL.D.
  • CervantesThe History of Don Quixote de la Mancha
  • ChaucerTroilus and Criseyde; The Canterbury Tales
  • CopernicusOn the Revolutions of Heavenly Spheres
  • DanteThe Divine Comedy
  • DarwinThe Descent of Man and Selection in Relation to Sex; The Origin of Species by Means of Natural Selection
  • DescartesDiscourse on the Method; Meditations on First Philosophy; Objections Against the Meditations and Replies; Rules for the Direction of the Mind; The Geometry
  • DostoevskyThe Brothers Karamazov
  • EpictetusThe Discourses
  • EuclidThe Thirteen Books of Euclid’s Elements
  • EuripidesAlcestis; Andromache; Bacchantes; Cyclops; Electra; Hecuba; Helen; Heracleidae; Heracles Mad; Hippolytus; Ion; Iphigeneia at Aulis; Iphigeneia in Tauris; Medea; Orestes; Phoenician Women; Rhesus; The Suppliants; Trojan Women
  • FaradayExperimental Researches in Electricity
  • FieldingThe History of Tom Jones, a Foundling
  • FourierAnalytical Theory of Heat
  • FreudA General Introduction to Psycho-Analysis; Beyond the Pleasure Principle; Civilization and Its Discontents; Group Psychology and the Analysis of the Ego; Inhibitions, Symptoms, and Anxiety; Instincts and Their Vicissitudes; New Introductory Lectures on Psycho- Analysis; Observations on “Wild” Psycho-Analysis; On Narcissism; Repression; Selected Papers on Hysteria; The Ego and the Id; The Future Prospects of Psycho-Analytic Therapy; The Interpretation of Dreams; The Origin and Development of Psycho- Analysis; The Sexual Enlightenment of Children; The Unconscious; Thoughts for the Times on War and Death
  • GalenOn the Natural Faculties
  • GalileoDialogues Concerning the Two New Sciences
  • GibbonThe Decline and Fall of the Roman Empire
  • GilbertOn the Loadstone and Magnetic Bodies
  • GoetheFaust
  • HamiltonThe Federalist
  • HarveyOn the Circulation of Blood; On the Generation of Animals; On the Motion of the Heart and Blood in Animals
  • HegelThe Philosophy of History; The Philosophy of Right
  • HerodotusThe History
  • HippocratesWorks
  • HobbesLeviathan
  • HomerThe Iliad; The Odyssey
  • HumeAn Enquiry Concerning Human Understanding
  • JamesThe Principles of Psychology
  • KantExcerpts from The Metaphysics of Morals; Fundamental Principles of the Metaphysic of Morals; General Introduction to the Metaphysic of Morals; Preface and Introduction to the Metaphysical Elements of Ethics with a note on Conscience; The Critique of Judgement; The Critique of Practical Reason; The Critique of Pure Reason; The Science of Right
  • KeplerEpitome of Copernican Astronomy; The Harmonies of the World
  • LavoisierElements of Chemistry
  • LockeA Letter Concerning Toleration; An Essay Concerning Human Understanding; Concerning Civil Government, Second Essay
  • LucretiusOn the Nature of Things
  • MachiavelliThe Prince
  • MarxCapital
  • Marx and EngelsManifesto of the Communist Party
  • MelvilleMoby Dick; or, The Whale
  • MillConsiderations on Representative Government; On Liberty; Utilitarianism
  • MiltonAreopagitica; English Minor Poems; Paradise Lost; Samson Agonistes
  • MontaigneEssays
  • MontesquieuThe Spirit of the Laws
  • NewtonMathematical Principles of Natural Philosophy; Optics; Twelfth Night; or, What You Will
    Christian Huygens
    ; Treatise on Light
  • NicomachusIntroduction to Arithmetic
  • PascalPensées; Scientific and mathematical essays; The Provincial Letters
  • PlatoApology; Charmides; Cratylus; Critias; Crito; Euthydemus; Euthyphro; Gorgias; Ion; Laches; Laws; Lysis; Meno; Parmenides; Phaedo; Phaedrus; Philebus; Protagoras; Sophist; Statesman; Symposium; The Republic; The Seventh Letter; Theaetetus; Timaeus
  • PlotinusThe Six Enneads
  • PlutarchThe Lives of the Noble Grecians and Romans
  • PtolemyThe Almagest
  • RabelaisGargantua and Pantagruel
  • RousseauA Discourse on Political Economy; A Discourse on the Origin of Inequality; The Social Contract
  • ShakespeareA Midsummer-Night’s Dream; All’s Well That Ends Well; Antony and Cleopatra; As You Like It; Coriolanus; Cymbeline; Julius Caesar; King Lear; Love’s Labour’s Lost; Macbeth; Measure For Measure; Much Ado About Nothing; Othello, the Moor of Venice; Pericles, Prince of Tyre; Romeo and Juliet; Sonnets; The Comedy of Errors; The Famous History of the Life of King Henry the Eighth; The First Part of King Henry the Fourth; The First Part of King Henry the Sixth; The Life and Death of King John; The Life of King Henry the Fifth; The Merchant of Venice; The Merry Wives of Windsor; The Second Part of King Henry the Fourth; The Second Part of King Henry the Sixth; The Taming of the Shrew; The Tempest; The Third Part of King Henry the Sixth; The Tragedy of Hamlet, Prince of Denmark; The Tragedy of King Richard the Second; The Tragedy of Richard the Third; The Two Gentlemen of Verona; The Winter’s Tale; Timon of Athens; Titus Andronicus; Troilus and Cressida
  • SmithAn Inquiry into the Nature and Causes of the Wealth of Nations
  • SophoclesAjax; Electra; Philoctetes; The Oedipus Cycle; The Trachiniae
  • SpinozaEthics
  • SterneThe Life and Opinions of Tristram Shandy, Gentleman
  • SwiftGulliver’s Travels
  • TacitusThe Annals; The Histories
  • ThucydidesThe History of the Peloponnesian War
  • TolstoyWar and Peace
  • VirgilThe Aeneid; The Eclogues; The Georgics

Appendix B – The “great” ideas

angel • animal • aristocracy • art • astronomy • beauty • being • cause • chance • change • citizen • constitution • courage • custom & convention • definition • democracy • desire • dialectic • duty • education • element • emotion • eternity • evolution • experience • family • fate • form • god • good & evil • government • habit • happiness • history • honor • hypothesis • idea • immortality • induction • infinity • judgment • justice • knowledge • labor • language • law • liberty • life & death • logic • love • man • mathematics • matter • mechanics • medicine • memory & imagination • metaphysics • mind • monarchy • nature • necessity & contingency • oligarchy • one & many • opinion • opposition • philosophy • physics • pleasure & pain • poetry • principle • progress • prophecy • prudence • punishment • quality • quantity • reasoning • relation • religion • revolution • rhetoric • same & other • science • sense • sign & symbol • sin • slavery • soul • space • state • temperance • theology • time • truth • tyranny • universal & particular • virtue & vice • war & peace • wealth • will • wisdom • world